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the ether II resulting from hydrolysis of I which may 
be shown to be very facile. Alternatively, the radical 
IV might discharge another electron at the anode to 
give the carbonium ion V, which could then react 
with solvent to give I and III or with water to give 
N-hydroxymethyl-N-methylformamide, the probable 
precursor of II. 
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On the Numerical Integration of Rate Equations 
Sir: 

A recent publication1 by Schaad describes a Monte 
Carlo method, of considerable generality, for the 
integration of kinetic rate equations whose analytical 
solutions are intractable or nonexistent. It is the 
purpose of this communication to point out that 
"direct" numerical methods2,3 are usually to be pre
ferred because of their much greater speed, greater 
accuracy, and equal ease of programming. In par
ticular, the fourth-order Runge-Kutta method3'4 is 
very convenient for kinetic problems. This method, 
while roughly half as fast as more efficient methods, has 
for kinetic work the advantages of being self-starting, 
not requiring integration at equally spaced values of 
time, and being readily available as a library routine at 
most computer installations. 

A general chemical reaction scheme may be specified 
by a set of equations of the form 

~ = F ^ 1 T1 C0 At 

i = 0, 1, . . 

Cn) (D 

where C,- is the concentration of the ith reacting species, 
and the F<, functions of time, temperature, and concen
trations of all species. It is precisely systems of this 
type which may be integrated directly, for specific 
initial conditions, by the Runge-Kutta method. Tem
perature will usually enter F,- only as a parameter, but 
if it is a nonconstant function of time (or indeed of any 
of the concentrations), the method is still applicable; 
hence nonisothermal problems, to which the Monte 
Carlo method is unsuited, may be treated. 

As an example, the system treated by Schaad1 
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which gives, for B{0) = C(O) the system 

^ = -(fa + fa) A 
At 

AB 
At 

AD 
At 

= faA - k*B2 

= kiA + faB* 

(3) 

was integrated with fa = 1, fa = 0.5, fa = 0.2 from the 
initial condition A(O) = 2, 5(0) = C(O) = Z)(O) = 0 
(all units arbitrary). The integration was carried out 
from t = 0 to t = 5 with a step of 0.1, results agreeing 
with the exact solution given by Pearson, King, and 
Langer6 to five figures throughout. This required 
approximately 2.5 sec. on a Ferranti Mercury computer, 
1Z6OO of the time required for the Monte Carlo method 
on a computer of similar speed.6 

Using the Runge-Kutta method, it is possible and 
practicable to determine rate constants by adjusting 
trial values until the solution of the differential equa
tions agrees as well as possible with experimental 
measurements. For a least-squares determination, 
one has to minimize the quantity 

D = EEw13(A^ (4) 

where A# is the difference between the calculated and 
experimental concentrations of the ith species at the jth 
experimental point. The w^ are weights assigned to 
compensate for differences in magnitude of the various 
concentrations and differences of precision among the 
various measurements. In particular, if the /Hh species 
is not measured in the experiment, Wkj = 0 for all j . 

Two procedures which have been found suitable for 
the minimization of D with respect to the rate con
stants are those devised by Rosenbrock7 and Fletcher 
and Powell.8 The latter has more rapid convergence 
but requires the evaluation of the partial derivatives of 
D with respect to the various rate constants. These in 
turn require calculation of the partial derivatives of 
the calculated concentrations with respect to the rate 
constants at all experimental points, giving rise to 
further differential equations which must be integrated 
simultaneously with the rate equations. 

To illustrate these processes, both were used to ex
tract the original k's from the values, obtained above, 
of B as a function of /. These values were rounded to 
three figures and regarded as "experimental data." 
Two starting approximations to the k values were used; 
the first, fa = 0.95, fa = 0.47, fa = 0.25, was obtained 
graphically from the B vs. t data; the second was taken 
five times poorer, viz., fa = 0.75, fa = 0.35, fa = 0.45. 
All weights were taken equal to unity. 

The Rosenbrock method gave the final result fa = 
1.0000, fa = 0.5001, fa = 0.1997, standard deviation 
= 2.6 X 10 -4, from both starting approximations. 
From the better approximation, this required 143 
integrations of the rate equations, and from the poorer 
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240, 6.5 and 10 min. Mercury time being used for the 
two determinations. 

The Fletcher-Powell minimization required, in this 
case, integration of a set of seven differential equations. 
For these, each integration over 50 points required 5.5 
sec , but the same results as given by Rosenbrock's 
method were obtained with 22 and 31 integrations, 
consuming 2.1 and 2.7 min., respectively. 

I t may be seen from these examples tha t either 
minimization procedure, coupled with R u n g e - K u t t a 
integration, yields a suitable method of determining 
rate constants when the rate equations cannot be inte
grated. In general, the Fletcher-Powell procedure 
will, because of its greater speed, be preferred for 
routine use after a mechanism has been established. 
The Rosenbrock method is usually preferable, however, 
for the preliminary investigation of a problem, as much 
less alteration in the computer program is required 
when a different set of rate equations is to be tried. 
Alternatively, preliminary investigation might be done 
on an analog computer, as the qualitative effect of 
variations in the rate constants could be easily de
termined. For determining the best values of the 
rate constants, however, digital computation is clearly 
superior, as the bookkeeping can be done by the ma
chine. On an analog computer, the variation of the 
rate constants would have to be carried out by the 
operator, a procedure of very low efficiency, particularly 
if more than two constants are to be varied. 
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The Association of Tetrabutylammonium Bromide in 
Methanol-Nitrobenzene Mixtures 

Sir: 

In a recent publication,1 a molecular interpretation 
was presented to explain the abnormal association be
havior of te t rabutylammonium bromide (Bu4NBr) in 
methanol-nitrobenzene mixtures. I t was claimed tha t 
association constants for this electrolyte in a large 
number of solvent systems gave a single straight line 
when the log was plotted against the reciprocal dielec
tric constant. The point for pure methanol was on this 
line, but as nitrobenzene was added, the association 
constant showed a minimum and finally increased to a 
point above the line for pure nitrobenzene. This 
behavior could not be explained by coulombic inter
actions since both solvents have approximately the 
same dielectric constant. . The enhanced KA forBu4NBr 
in the nitrobenzene-rich mixtures was explained by a 
specific interaction between a nitrobenzene molecule 
and a Bu4NBr ion pair. In the methanol-rich mixtures 
a specific solvation of Br~ ion by methanol was postu
lated. 

We believe that the minimum described above 
is an artifact due in part to the data and in part 
to the method used to calculate KA- The association 
constants considered were those of Sadek and Fuoss2 

and were obtained from their conductance data by 
means of the Fuoss-Shedlovsky method. These da ta 
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cover far too narrow a concentration range (1-N X 
10~4 N) for the accurate determination of association 
constants. Furthermore, in the Fuoss-Shedlovsky 
method, the Onsager limiting conductance equation is 
used to evaluate the conductance of the free ions. 
This procedure is known to be completely unreliable for 
KA much less than 100. The association constants 
under consideration here ranged from about 2(5 for 
methanol to 45 for nitrobenzene solutions. The more 
recent conductance da ta for this salt in pure methanol3 

were not considered nor was the much more recent 
analysis4 based on the Fuoss-Onsager conductance 
theory.5 In tha t analysis, Fuoss claimed definite asso
ciation in both pure solvent components but no asso
ciation for the intermediate mixtures. However, the 
not too reliable AA method was used in tha t analysis. 
An ion size & = 6 was found to fit the data in other 
solvent mixtures of lower dielectric constant where 
association was substantial. Fuoss used this same value 
of & to eliminate one of the unknowns in the conductance 
equation. This assumption of a constant & for every 
solvent mixture is extremely risky since it has been 
shown to be invalid for dioxane-water mixtures.6 

We have analyzed the data2 , 3 by the Fuoss-Onsager 
conductance theory7 on an IBM 7070 computer using a 
For t ran program similar to tha t described by Kay.8 

The early data2 for Bu4NBr in methanol solution gave 
an extremely low & and poor precision when treated as 
an unassociated electrolyte and a negative value of d 
when treated as an associated electrolyte. The 1954 
data for methanol solutions, on the other hand, gave 
A0 = 96.20 ± 0.03 and d = 2.8 ± 0.3 with a standard 
deviation of 0.03 when Bu4NBr was treated as unasso
ciated and gave a negative KA when treated as an 
associated electrolyte. These latter results indicate 
tha t Bu 4NBr is slightly, if at all, associated (KA < 
10) in methanol. 

In order to verify this result, precise conductance 
measurements were carried out for Bu4NBr in anhy
drous methanol over the concentration range 3-47 X 
10~4 M. The actual conductances will be reported 
with a more comprehensive study of the quaternary 
ammonium salts in H2O, D2O, and methanol at a later 
date. The results of a Fuoss-Onsager analysis7 of 
two runs are recorded here in Table I where the first two 
entries resulted from treating Bu4NBr as an unassoci
ated electrolyte while the last two entries resulted from 
treating Bu4NBr as an associated electrolyte. These 
results indicate, as found above with the older data, tha t 
Bu4NBr is in fact associated only to a very slight ex
tent, if a t all, in methanol. The association constant 
of about 3.5 could be the result of about a 10% error 
in the evaluation of the electrophoretic effect, or a 
small amount of c ' / ! dependence tha t has been neglected 
in the conductance theory. In any case KA is consider
ably less than 26, the value used by Hyne, and there is 
no doubt tha t association of this salt in methanol 
solutions is considerably less than tha t predicted from 
the association behavior in solvent mixtures of much 
lower dielectric constant. 
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